10 CFR Ch. II (1-1-13 Edition) ## § 429.25 - (b) Certification reports. (1) The requirements of §429.12 are applicable to pool heaters; and - (2) Pursuant to §429.12(b)(13), a certification report shall include the following public product-specific information: The thermal efficiency in percent (%) and the input capacity in British thermal units per hour (Btu/h). [76 FR 12451, Mar. 7, 2011; 76 FR 24769, May 2, 2011] ## § 429.25 Television sets. [Reserved] ## § 429.26 Fluorescent lamp ballasts. (a) Sampling plan for selection of units for testing. (1) The requirements of §429.11 are applicable to fluorescent lamp ballasts; and - (2) For each basic model of fluorescent lamp ballasts, a sample of sufficient size, not less than four, shall be randomly selected and tested to ensure that— - (i) Any represented value of estimated annual energy operating costs, energy consumption, or other measure of energy consumption of a basic model for which consumers would favor lower values shall be greater than or equal to the higher of: - (A) The mean of the sample, where: $$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$ and, \bar{x} is the sample mean; n is the number of samples; and x_i is the ith sample; $\stackrel{\frown}{(B)}$ The upper 99 percent confidence limit (UCL) of the true mean divided by 1.01, where: $$UCL = \bar{x} + t_{.99} \left(\frac{s}{\sqrt{n}} \right)$$ And \overline{x} is the sample mean; s is the sample standard deviation; n is the number of samples; and $t_{0.99}$ is the t statistic for a 99% one-tailed confidence interval with n-1 degrees of freedom (from Appendix A). and (ii) Any represented value of the ballast efficacy factor or other measure of the energy consumption of a basic model for which consumers would favor a higher value shall be less than or equal to the lower of: (A) The mean of the sample, where: $$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$ and, \bar{x} is the sample mean; n is the number of samples; and x_i is the i^{th} sample; or. (B) The lower 99 percent confidence limit (LCL) of the true mean divided by 0.99, where: